B. Using data from the previous page, calculate the following values.

$$SS_{\tau} = \sum \left[\frac{(\sum x_{\tau})^2}{1 - (\sum X_{\tau})^2} \right] = \frac{(\sum X_{\tau})^2}{1 - (\sum X_{\tau})^2}$$

$$SS_T = \sum \left[\frac{(\sum x_T)^2}{n} \right] - \frac{(\sum X)^2}{N} \qquad SS_E = \sum X^2 - \sum \left[\frac{(\sum x_T)^2}{n} \right]$$

$$SS_{TOTAL} = \sum x^2 - \frac{(\sum x)^2}{N}$$

Complete the following chart using the data accumulated to this point.

Variance Analysis Summary Table				
Variance Sources	df	Sum of the Squares	Mean Squares	ANOVA
Between Treatments	t - 1 =	SS _T =	MS _T =	
Within Treatments (error)	N - t =	SS _E =	MS _E =	F =
Total Variance	N - 1	SS _{TOTAL} =		

D. Using the 5-step approach to hypothesis testing and the above chart, test at the .05 level whether the sample means are from populations with equal means.