B. Using data from the previous page, calculate the following values. $$SS_{\tau} = \sum \left[\frac{(\sum x_{\tau})^2}{1 - (\sum X_{\tau})^2} \right] = \frac{(\sum X_{\tau})^2}{1 - (\sum X_{\tau})^2}$$ $$SS_T = \sum \left[\frac{(\sum x_T)^2}{n} \right] - \frac{(\sum X)^2}{N} \qquad SS_E = \sum X^2 - \sum \left[\frac{(\sum x_T)^2}{n} \right]$$ $$SS_{TOTAL} = \sum x^2 - \frac{(\sum x)^2}{N}$$ Complete the following chart using the data accumulated to this point. | Variance Analysis Summary Table | | | | | |---------------------------------|---------|-----------------------|-------------------|-------| | Variance
Sources | df | Sum of the
Squares | Mean Squares | ANOVA | | Between
Treatments | t - 1 = | SS _T = | MS _T = | | | Within
Treatments
(error) | N - t = | SS _E = | MS _E = | F = | | Total
Variance | N - 1 | SS _{TOTAL} = | | | D. Using the 5-step approach to hypothesis testing and the above chart, test at the .05 level whether the sample means are from populations with equal means.